Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Heliyon ; 10(7): e28501, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586339

RESUMO

Septic cardiomyopathy (SCM) is associated with an imbalance in mitochondrial quality and high mortality rates, with no effective treatment developed to date. Curcumin provides antioxidant, anti-inflammatory, cardiovascular, and mitochondrial protection. However, curcumin has not been confirmed to improve cardiac dysfunction in sepsis. We hypothesized that curcumin can reduce abnormal inflammatory responses by improving mitochondrial function as a novel mechanism to improve SCM. To explore this hypothesis, we used an in vivo male C57BL/6 mouse sepsis model and an in vitro model of lipopolysaccharide-stimulated HL-1 cells. The effects of curcumin on sepsis-induced cardiac dysfunction, inflammatory responses, and mitochondrial quality of cardiac cells were observed using quantitative polymerase chain reaction, western blotting, echocardiography, and transmission electron microscopy. Curcumin activated sirtuin 1 (SIRT1); increased expression of the mitochondrial biogenesis-related genes Pgc1α, Tfam, and Nrf2; reduced dynamin-related protein 1 translocation from the cytoplasm to mitochondria; and restored the mitochondrial morphology and function in cardiac cells. Accordingly, curcumin protected heart function after septic shock and alleviated the effects of SCM. SIRT1 knockdown reversed the protective effects of curcumin on mitochondria. Therefore, curcumin promotes mitochondrial biogenesis and inhibits mitochondrial fragmentation by activating SIRT1, thereby improving the mitochondrial quality and reducing oxidative stress in cardiomyocytes and sepsis-induced cardiac dysfunction. These findings provide new evidence supporting the use of curcumin to treat SCM.

2.
Science ; 383(6685): 855-859, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386724

RESUMO

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

3.
Pharm Biol ; 62(1): 250-260, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38389274

RESUMO

CONTEXT: Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE: To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS: A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 µM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS: Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 µM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS: Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.


Assuntos
Ginsenosídeos , Lipopolissacarídeos , Sepse , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Microcirculação , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico , Sepse/metabolismo
4.
Pharmacol Res ; 200: 107056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228256

RESUMO

Sepsis is a dysregulated response to infection that can result in life-threatening organ failure, and septic cardiomyopathy is a serious complication involving ferroptosis. Olaparib, a classic targeted drug used in oncology, has demonstrated potential protective effects against sepsis. However, the exact mechanisms underlying its action remain to be elucidated. In our study, we meticulously screened ferroptosis genes associated with sepsis, and conducted comprehensive functional enrichment analyses to delineate the relationship between ferroptosis and mitochondrial damage. Eight sepsis-characterized ferroptosis genes were identified in sepsis patients, including DPP4, LPIN1, PGD, HP, MAPK14, POR, GCLM, and SLC38A1, which were significantly correlated with mitochondrial quality imbalance. Utilizing DrugBank and molecular docking, we demonstrated a robust interaction of Olaparib with these genes. Lipopolysaccharide (LPS)-stimulated HL-1 cells and monocytes were used to establish an in vitro sepsis model. Additionally, an in vivo model was developed using mice subjected to cecal ligation and perforation (CLP). Intriguingly, low-dose Olaparib (5 mg/kg) effectively targeted and mitigated markers associated with ferroptosis, concurrently improving mitochondrial quality. This led to a marked enhancement in cardiac function and a significant increase in survival rates in septic mice (p < 0.05). The mechanism through which Olaparib ameliorates ferroptosis in cardiac and leukocyte cells post-sepsis is attributed to its facilitation of mitophagy, thus favoring mitochondrial integrity. In conclusion, our findings suggest that low-dose Olaparib can improve mitochondrial quality by accelerating mitophagy flux, consequently inhibiting ferroptosis and preserving cardiac function after sepsis.


Assuntos
Ferroptose , Ftalazinas , Piperazinas , Sepse , Humanos , Camundongos , Animais , Mitofagia/fisiologia , Simulação de Acoplamento Molecular , Fosfatidato Fosfatase
5.
Adv Mater ; 36(2): e2308706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983869

RESUMO

All-perovskite tandem solar cells offer the potential to surpass the Shockley-Queisser (SQ) limit efficiency of single-junction solar cells while maintaining the advantages of low-cost and high-productivity solution processing. However, scalable solution processing of electron transport layer (ETL) in p-i-n structured perovskite solar subcells remains challenging due to the rough perovskite film surface and energy level mismatch between ETL and perovskites. Here, scalable solution processing of hybrid fullerenes (HF) with blade-coating on both wide-bandgap (≈1.80 eV) and narrow-bandgap (≈1.25 eV) perovskite films in all-perovskite tandem solar modules is developed. The HF, comprising a mixture of fullerene (C60 ), phenyl C61 butyric acid methyl ester, and indene-C60 bisadduct, exhibits improved conductivity, superior energy level alignment with both wide- and narrow-bandgap perovskites, and reduced interfacial nonradiative recombination when compared to the conventional thermal-evaporated C60 . With scalable solution-processed HF as the ETLs, the all-perovskite tandem solar modules achieve a champion power conversion efficiency of 23.3% (aperture area = 20.25 cm2 ). This study paves the way to all-solution processing of low-cost and high-efficiency all-perovskite tandem solar modules in the future.

7.
Adv Sci (Weinh) ; 10(36): e2304885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909346

RESUMO

Excessive mitochondrial fission following ischemia and hypoxia relies on the formation of contacts between the endoplasmic reticulum and mitochondria (ER-Mito); however, the specific mechanisms behind this process remain unclear. Confocal microscopy and time course recording are used to investigate how ischemia and hypoxia affect the activation of dynamin-related protein 1 (Drp1), a protein central to mitochondrial dynamics, ER-Mito interactions, and the consequences of modifying the expression of Drp1, shroom (Shrm) 4, and inverted formin (INF) 2 on ER-Mito contact establishment. Both Drp1 activation and ER-Mito contact initiation cause excessive mitochondrial fission and dysfunction under ischemic-hypoxic conditions. The activated form of Drp1 aids in ER-Mito contact initiation by recruiting Shrm4 and promoting actin bundling between the ER and mitochondria. This process relies on the structural interplay between INF2 and scattered F-actin on the ER. This study uncovers new roles of cytoplasmic Drp1, providing valuable insights for devising strategies to manage mitochondrial imbalances in the context of ischemic-hypoxic injury.


Assuntos
Actinas , Dinaminas , Humanos , Actinas/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Isquemia , Hipóxia/metabolismo
8.
Mil Med Res ; 10(1): 46, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833768

RESUMO

Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.


Assuntos
Dinaminas , Hipóxia , Isquemia , Mitocôndrias , Insuficiência de Múltiplos Órgãos , Humanos , Dinaminas/metabolismo , Hipóxia/metabolismo , Hipóxia/terapia , Isquemia/metabolismo , Isquemia/terapia , Mitocôndrias/metabolismo , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/terapia
9.
J Am Soc Mass Spectrom ; 34(5): 939-947, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37018384

RESUMO

Semiquantitation of suspect per- and polyfluoroalkyl substances (PFAS) in complex mixtures is challenging due to the increasing number of suspect PFAS. Traditional 1:1 matching strategies require selecting calibrants (target-surrogate standard pairs) based on head group, fluorinated chain length, and retention time, which is time-consuming and requires expert knowledge. Lack of uniformity in calibrant selection for estimating suspect concentrations among different laboratories makes comparing reported suspect concentrations difficult. In this study, a practical approach whereby the area counts for 50 anionic and 5 zwitterionic/cationic target PFAS were ratioed to the average area of their respective stable-isotope labeled surrogates to create "average PFAS calibration curves" for suspects detected in negative- and positive-ionization mode liquid chromatography quadrupole time-of-flight mass spectrometry. The calibration curves were fitted with log-log and weighted linear regression models. The two models were evaluated for their accuracy and prediction interval in predicting the target PFAS concentrations. The average PFAS calibration curves were then used to estimate the suspect PFAS concentration in a well-characterized aqueous film-forming foam. Weighted linear regression resulted in more target PFAS that fell within 70-130% of their known standard value and narrower prediction intervals than the log-log transformation approach. The summed suspect PFAS concentrations calculated by weighted linear regression and log-log transformation were within 8 and 16% of those estimated by a 1:1 matching strategy. The average PFAS calibration curve can be easily expanded and can be applied to any suspect PFAS even if the confidence in the suspect structure is low or unknown.

10.
Mol Ecol ; 32(13): 3733-3746, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009964

RESUMO

Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free-living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites (Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free-living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco-evolutionary dynamics on infection outcomes, including parasite co-existence through the lifetime of the host.


Assuntos
Interações Hospedeiro-Parasita , Traços de História de Vida , Parasitos , Animais , Evolução Biológica , Biota , Mamíferos
11.
Lab Invest ; 103(3): 100034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925198

RESUMO

Lung adenocarcinoma is the most common type of lung cancer. We recently reported that inflammation-driven lung adenocarcinoma (IDLA) originates from alveolar type (AT)-II cells, which depend on major histocompatibility complex (MHC) class II to promote the expansion of regulatory T cells. The MHC class II-associated invariant chain (CD74) binds to the macrophage migration inhibitory factor (MIF), which is associated with promoting tumor growth and invasion. However, the role of MIF-CD74 in the progression of lung adenocarcinoma and the underlying mechanisms remain unclear. We aimed to explore the role of MIF-CD74 in the progression of lung adenocarcinoma and elucidate the mechanisms by which tumor necrosis (TNF)-α-mediated inflammation regulates CD74 and MIF expression in IDLA. In human lung adenocarcinoma, CD74 was upregulated on the surface of tumor cells originating from AT-II cells, which correlated positively with lymph node metastasis, tumor origin/nodal involvement/metastasis stage, and TNF-α expression. MIF interaction with CD74 promoted the proliferation and migration of A549 and H1299 cells in vitro. Using a urethane-induced IDLA mouse model, we observed that CD74 was upregulated in tumor cells and macrophages. MIF expression was upregulated in macrophages in IDLA. Blocking TNF-α-dependent inflammation downregulated CD74 expression in tumor cells and CD74 and MIF expression in macrophages in IDLA. Conditioned medium from A549 cells or activated mouse AT-II cells upregulated MIF in macrophages by secreting TNF-α. TNF-α-dependent lung inflammation contributes to the progression of lung adenocarcinoma by upregulating CD74 and MIF expression, and AT-II cells upregulate MIF expression in macrophages by secreting TNF-α. This study provides novel insights into the function of CD74 in the progression of IDLA.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Fatores Inibidores da Migração de Macrófagos , Pneumonia , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares , Neoplasias Pulmonares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa
12.
Food Chem Toxicol ; 176: 113756, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36997055

RESUMO

Aflatoxin G1 (AFG1), a member of the aflatoxin family with cytotoxic and carcinogenic properties, is one of the most common mycotoxins occurring in various agricultural products, animal feed, and human foods and drinks worldwide. Epithelial cells in the gastrointestinal tract are the first line of defense against ingested mycotoxins. However, the toxicity of AFG1 to gastric epithelial cells (GECs) remains unclear. In this study, we explored whether and how AFG1-induced gastric inflammation regulates cytochrome P450 to contribute to DNA damage in GECs. Oral administration of AFG1 induced gastric inflammation and DNA damage in mouse GECs associated with P450 2E1 (CYP2E1) upregulation. Treatment with the soluble TNF-α receptor sTNFR:Fc inhibited AFG1-induced gastric inflammation, and reversed CYP2E1 upregulation and DNA damage in mouse GECs. TNF-α-mediated inflammation plays an important role in AFG1-induced gastric cell damage. Using the human gastric cell line GES-1, AFG1 upregulated CYP2E1 through NF-κB, causing oxidative DNA damage in vitro. The cells were also treated with TNF-α and AFG1 to mimic AFG1-induced TNF-α-mediated inflammation. TNF-α activated the NF-κB/CYP2E1 pathway to promote AFG1 activation, which enhanced DNA cellular damage in vitro. In conclusion, AFG1 ingestion induces TNF-α-mediated gastric inflammation, which upregulates CYP2E1 to promote AFG1-induced DNA damage in GECs.


Assuntos
Aflatoxinas , Citocromo P-450 CYP2E1 , Camundongos , Humanos , Animais , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Células Epiteliais/metabolismo , Aflatoxinas/toxicidade , Estresse Oxidativo , Inflamação/induzido quimicamente
13.
Oxid Med Cell Longev ; 2022: 7958542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238641

RESUMO

Objective: This study is aimed at identifying the potential diagnostic markers for circulating endothelial cells (CECs) for acute myocardial ischemia (AMI) and exploring the regulatory mechanisms of the selected biomarker in mitochondrial oxidative damage and vascular inflammation in AMI pathology. Methods: Utilizing the Gene Expression Omnibus dataset GSE66360, we scanned for differentially expressed genes (DEGs) in 49 AMI patients and 50 healthy subjects. To discover possible biomarkers, LASSO regression and support vector machine recursive feature elimination examinations were conducted. Using the GSE60993 and GSE123342 datasets and AMI rat models, the expression levels and diagnostic accuracy of the biomarkers in AMI were thoroughly verified. CIBERSORT was employed to evaluate the compositional patterns of 22 distinct immunological cell percentages in AMI according to combined cohorts. The oxidative-damaged mitochondria were detected by confocal microscopy observation of MitoTracker, ROS-DCFH-DA, and mCherry-GFP-LC3B. Results: In total, 122 genes were identified. The identified DEGs primarily contributed in arteriosclerosis, arteriosclerotic cardiovascular disorders, bacterial infectious disorder, coronary artery disease, and myocardial infarction. Nine features (NR4A2, GABARAPL1 (GEC1), CLEC4D, ITLN1, SNORD89, ZFP36, CH25H, CCR2, and EFEMP1) of the DEGs were shared by two algorithms, and GABARAPL1 (GEC1) was identified and verified as a diagnostic mitochondrial biomarker for AMI. Confocal results showed that there existed mitochondrial damage and oxidative stress in cardiac CMECs after AMI, and the blocked autophagy flux could be released by exosome burst in cardiac CMECs and blood CECs. Immune cell infiltration testing declared that elevated GEC1 expression in blood CECs was linked to the rise of monocytes and neutrophils. Functional tests revealed that high GEC1 expression in CMECs and CECs could activate the vascular inflammatory response by stimulating NLRP3 inflammasome production after AMI. Conclusion: Oxidative-damaged mitochondria in cardiac CMECs activate GEC1-mediated autophagosomes but block autophagy flux after AMI. The exfoliated cardiac CMECs evolve into abnormal blood CECs, and the undegraded GEC1 autophagosomes produce a large number of NLRP3 inflammasomes by exosome burst, stimulating the increase in monocytes and neutrophils and ultimately triggering vascular inflammation after AMI. Therefore, GEC1 in blood CECs is a highly specific diagnostic mitochondrial biomarker for AMI.


Assuntos
Exossomos , Isquemia Miocárdica , Animais , Autofagia , Biomarcadores/metabolismo , Proteínas de Transporte , Células Endoteliais/metabolismo , Exossomos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Isquemia Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
14.
Oxid Med Cell Longev ; 2022: 3858871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199424

RESUMO

Calcific aortic valve stenosis (CAVS) is the most common heart valve disorder among humans. To date, no effective method has been identified to prevent this disease. Herein, we aimed to identify novel diagnostic and mitochondria-related biomarkers of CAVS, based on two machine learning algorithms. We further explored their association with infiltrating immune cells and studied their potential function in CAVS. The GSE12644, GSE51472, and GSE83453 expression profiles were downloaded from the Gene Expression Omnibus (GEO) repository. The GSE12644 and GSE51472 datasets were integrated to identify differentially expressed genes (DEGs). GSE12644 contains 10 normal and 10 CAVS samples, whereas GSE51472 contains 5 normal and 10 CAVS samples. GO and KEGG assays of DEGs were conducted, and the correlation between matrix metalloproteinase 9 (MMP9) expression and immune cell infiltration was explored, using CIBERSORT. The LASSO regression model and SVM-RFE analysis were used to identify diagnostic genes. The expression of MMP9 in CAVS and non-CAVS samples was measured using RT-PCR, western blotting and immunohistochemistry. A series of functional experiments were performed to explore the potential role of MMP9 in mitochondrial metabolism and oxidative stress during CAVS progression. Twenty-two DEGs were identified, of which six genes (SCG2, PPBP, TREM1, CCL19, WIF1, and MMP9) were ultimately distinguished as diagnostic genes in CAVS. Of these, MMP9 was indicated as a mitochondria-related gene, the expression and diagnostic value of which were further confirmed in the GSE83453 dataset. Correlation analysis revealed a positive correlation between MMP9 and infiltrating immune cells. In our cohort, MMP9 expression was distinctly increased in CAVS samples, and its inhibition attenuated the calcification of valve interstitial cells (VICs) by suppressing mitochondrial damage and oxidative stress. Taken together, our findings suggest MMP9 as a novel mitochondrial dysfunction biomarker and therapeutic target for CAVS.


Assuntos
Estenose da Valva Aórtica , Doenças Mitocondriais , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Biomarcadores/metabolismo , Calcinose , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
15.
FASEB J ; 36(11): e22595, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205325

RESUMO

Chronic inflammation, which is dominated by macrophage-involved inflammatory responses, is an instigator of cancer initiation. Macrophages are the most abundant immune cells in healthy lungs, and associated with lung tumor development and promotion. PD-L1 is a negative molecule in macrophages and correlated with an immunosuppressive function in tumor environment. Macrophages expressing PD-L1, rather than tumor cells, exhibits a critical role in tumor growth and progression. However, whether and how PD-L1 in macrophages contributes to inflammation-induced lung tumorigenesis requires further elucidation. Here, we found that higher expression of PD-L1 in CD11b+ CD206+ macrophages was positively correlated with tumor progression and PD-1+ CD8+ T cells population in human adenocarcinoma patients. In the urethane-induced inflammation-driven lung adenocarcinoma (IDLA) mouse model, the infiltration of circulating CD11bhigh F4/80+ monocyte-derived macrophages (MoMs) was increased in pro-tumor inflamed lung tissues and lung adenocarcinoma. PD-L1 was mainly upregulated in MoMs associated with enhanced T cells exhaustion in lung tissues. Anti-PD-L1 treatment can reduce T cells exhaustion at pro-tumor inflammatory stage, and then inhibit tumorigenesis in IDLA. The pro-tumor lung inflammation depended on TNF-α to upregulate PD-L1 and CSN6 expression in MoMs, and induced cytokines production by alveolar type-II cells (AT-II). Furthermore, inflammatory AT-II cells could secret TNF-α to upregulate PD-L1 expression in bone-marrow driven macrophages (BM-M0). Inhibition of CSN6 decreased PD-L1 expression in TNF-α-activated macrophage in vitro, suggesting a critical role of CSN6 in PD-L1 upregulation. Thus, pro-tumor inflammation can depend on TNF-α to upregulate PD-L1 in recruited MoMs, which may be essential for lung tumorigenesis.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Pneumonia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Camundongos , Pneumonia/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uretana/metabolismo
16.
Front Immunol ; 13: 946731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844544

RESUMO

Mitochondria get caught in the crossfire of coronavirus disease 2019 (COVID-19) and antiviral immunity. The mitochondria-mediated antiviral immunity represents the host's first line of defense against viral infection, and the mitochondria are important targets of COVID-19. However, the specific manifestations of mitochondrial damage in patients with COVID-19 have not been systematically clarified. This study comprehensively analyzed one single-cell RNA-sequencing dataset of lung tissue and two bulk RNA-sequencing datasets of blood from COVID-19 patients. We found significant changes in mitochondrion-related gene expression, mitochondrial functions, and related metabolic pathways in patients with COVID-19. SARS-CoV-2 first infected the host alveolar epithelial cells, which may have induced excessive mitochondrial fission, inhibited mitochondrial degradation, and destroyed the mitochondrial calcium uniporter (MCU). The type II alveolar epithelial cell count decreased and the transformation from type II to type I alveolar epithelial cells was blocked, which exacerbated viral immune escape and replication in COVID-19 patients. Subsequently, alveolar macrophages phagocytized the infected alveolar epithelial cells, which decreased mitochondrial respiratory capacity and activated the ROS-HIF1A pathway in macrophages, thereby aggravating the pro-inflammatory reaction in the lungs. Infected macrophages released large amounts of interferon into the blood, activating mitochondrial IFI27 expression and destroying energy metabolism in immune cells. The plasma differentiation of B cells and lung-blood interaction of regulatory T cells (Tregs) was exacerbated, resulting in a cytokine storm and excessive inflammation. Thus, our findings systematically explain immune escape and excessive inflammation seen during COVID-19 from the perspective of mitochondrial quality imbalance.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/uso terapêutico , Humanos , Inflamação , Pulmão , Mitocôndrias , RNA
17.
Front Pharmacol ; 13: 869300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517804

RESUMO

Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. The long-term effects of ICH-induced intracranial hematoma on patients' neurological function are unclear. Currently, an effective treatment that significantly reduces the rates of death and disability in patients with ICH is not available. Based on accumulating evidence, ferroptosis may be the leading factor contributing to the neurological impairment caused by ICH injury. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated receptor in the nuclear hormone receptor family that synergistically interacts with the nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway to promote the expression of related genes and inhibit ferroptosis. Primary rat hippocampal neurons were treated with heme (50 µM) and erastin (50 µM) to induce ferroptosis, followed by the PPARγ agonist pioglitazone (PDZ, 10 µM) to verify the inhibitory effect of PPARγ activation on ferroptosis. ML385 (2 µM), a novel and specific NRF2 inhibitor, was administered to the inhibitor group, followed by an analysis of cellular activity and immunofluorescence staining. In vivo Assays, ICH rats injected with autologous striatum were treated with 30 mg/kg/d pioglitazone, and the inhibitor group was injected with ML385 (30 mg/kg). The results showed that PDZ inhibited ferroptosis in neurons by increasing the expression of PPARγ, Nrf2 and Gpx4 in vitro, while PDZ reduced ferroptosis in neurons after ICH and promoted the recovery of neural function in vivo. Our results suggest that PDZ, a PPARγ agonist, promotes Gpx4 expression through the interaction between PPARγ and the Nrf2 pathway, inhibits ferroptosis of neurons after ICH, and promotes the recovery of neural function.

18.
Front Pharmacol ; 13: 889226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571134

RESUMO

Intracerebral hemorrhage (ICH), a severe hemorrhagic stroke, induces cerebral oxidative stress and severe secondary neurological injury. Curcumin was demonstrated to inhibit oxidative stress in the brain after ICH. However, the pharmacological mechanism needs further research. We used an intrastriatal injection of autologous blood to make the rat ICH model, and then the rat was treated with curcumin (100 mg/kg/day). Modified Neurological Severity Score (mNSS) and corner test results showed that curcumin could significantly promote the neurological recovery of ICH rats. Meanwhile, curcumin could substantially reduce ROS and MDA in the tissues around intracranial hematoma and prevent GSH depletion. To explore the pharmacological molecular mechanism of curcumin, we used HAPI cells and primary rat cortical microglia for in vitro experiments. In vitro, heme-treated cells were used as the cell model of ICH to explore the molecular mechanism of inhibiting oxidative stress by curcumin treatment. The results showed that curcumin significantly inhibited heme-induced oxidative stress, decreased intracellular ROS and MDA, and promoted Nrf2 and its downstream antioxidant gene (HO-1, NQO1, and Gpx4) expression. These results suggest that curcumin inhibits oxidative stress by activating the Nrf2/HO-1 pathway. Here, our results indicate that curcumin can promote the inhibition of oxidative stress in microglia by activating the Nrf2/HO-1 pathway and promoting neurological recovery after ICH, providing a new therapeutic target for clinical treatment of ICH.

19.
Mil Med Res ; 9(1): 25, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624495

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive. METHODS: The 150 male C57 mice underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h, Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1 (Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine (NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA (mtDNA) copy number, intracellular and mitochondrial reactive oxygen species (ROS), autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/LC3 I, TNF-α, IL-1ß, etc., were detected under normal or Drp1 interference conditions. RESULTS: The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI (P < 0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44% and 88% by Drp1 short hairpin RNA (shRNA) (P < 0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC (P < 0.05). RIP1/RIP3 inhibitor Necrostatin-1 (Nec-1) restored 75% to a low LC3 II/LC3 I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation (P < 0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes (P > 0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4 - 5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1 (P < 0.05). Furthermore, TNF-α and IL-1ß increased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen-glucose deprivation/reoxygenation (OGD/R) conditions (P < 0.05). CONCLUSIONS: CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation, triggering a vicious cycle.


Assuntos
Isquemia Encefálica , Exossomos , Traumatismo por Reperfusão , Animais , Infarto Cerebral , DNA Mitocondrial , Exossomos/metabolismo , Glucose , Humanos , Inflamação , Masculino , Camundongos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Fator de Necrose Tumoral alfa
20.
J Hazard Mater ; 424(Pt C): 127577, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34808450

RESUMO

A bio-nanocluster (Fe3O4@bacteria) was prepared by simply mixture using the bacterial suspension and Fe3O4 nanoclusters to remove Congo red (CR) contamination from water resources. The bio-nanocluster was characterized by SEM, TEM and XPS. Adsorption efficiency, adsorption process and adsorption mechanism were comprehensively investigated. The maximum adsorption capacity (Qm) of CR dye onto the Fe3O4@bacteria peaked at 320.1 mg/g, which was 2.88 times that of Fe3O4 under the same condition. Based on the equilibrium and kinetic studies, the Langmuir isotherm theory and pseudo-first-order model is appropriate to describe the adsorption process. The adsorption of CR is spontaneous and exothermic according to the thermodynamics parameters (ΔGθ, ΔHθ and ΔSθ). The adsorption force dominated the Van der Waals force, biofloculation and chemisorption. The Fe3O4@bacteria could be applied potentially as an absorbent with high efficiency and environmentally friendly remediation of dyeing wastewater.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Bactérias , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...